نموذج 1

الجمهورية اليمنية وزارة التعليم العالي و البحث العلمي جامعة 21 سبتمبر للعلوم الطبية و التطبيقي

كلية الصيدلة السريرية

 Level
 4TH
 Semester
 2ND
 Year
 2020-2021
 Time allowed
 2 hour

 Final-term Exam
 of
 "Pharmacokinetics
 حركية دواء

Note: The exam is composed of (3) Pages

Helping Equations

$[AUC] = \frac{A}{\alpha} + \frac{B}{b} + \frac{C}{\delta}$	$D^{\circ} = C_{\mathbf{p}} V_{\mathbf{D}}$
$t_{1/2} = 0.5 \text{ Cp}^{\circ}/\text{k}$	$k_{21} = \frac{Ab + B\alpha}{A + B}$
$k_{12} = \frac{AB(b-\alpha)^2}{(A+B)(Ab+B\alpha)}$	$DR = Du\infty - Du$
$k = \frac{\alpha b(A+B)}{Ab+B\alpha}$	$t_{1/2} = \frac{0.693}{k}$
Cp = Cp0 - (k.t)	k=- 2.303 (log Cp3- log Cp1)/(t3 -t1)
$Cl_{T} = \frac{D_0}{[AUC]_0^{\infty}}$	$Cl_T = k.V_D$
Log Cp = log Cp0 - (k.t/2.303)	k = - (Cp2 - Cp1)/(t2 - t1)

CHOOSE THE CORRECT ANSWER

1. After a single I.V. injection of 100-mg dose of a drug, the following equation was obtained

$$C_{\rm p} = 222 \, e^{-0.256 \, \rm t} + 25 \, e^{-0.034 \, \rm t} + 6.7 \, e^{-0.102 \, \rm t}$$

- (i) What is the type of pharmacokinetic model of that drug?
 - a. Three compartment
 - b. Two compartment
 - c. One compartment
 - d. None

نموذج 1

(ii) Calculate the plasma level of the drug 5 hours after the IV dose.

- a. 1010.4
- b. 3.6
- c. 66.7
- d. 12.1

- (iii) Calculate AUC∞ of the drug
 - a. 1668.2
 - b. 2800.4
 - c. 3123.5
 - d. 1.6

2. After administering a single intravenous dose (10 mg/kg) of a drug in nine normal volunteers (average body weight is 78 kg), the following equation was obtained

$$C_{\rm p} = 1.56 \, e^{-0.213 \, \rm t} + 71.3 e^{-0.098 \, \rm t}$$

- (i) Calculate the rate constant of distribution of the drug from body tissues to blood.
 - a. 0.782
 - b. 0.211
 - c. 0.045
 - d. 5.21

- (ii) Determine the elimination half-life of the drug
 - a. 12.3
 - b. 6.99
 - c. 2.45
 - d. 1.005

3. A patient was given a single IV dose of a drug at a dose of 750 mg. Blood samples were taken at various time intervals. (Cp) was determined from the plasma sample and (Dt) from urine samples as follows:

t (hr)	Cp mg/L	Dt (mg)
0.25	33.5	30
1	21.2	102
2	13.4	45
4	11.9	61
12	9.5	17
100	2.3	28

نموذج 1

(i)	Deter	mine the Order of elimination (from blood data)
	a.	Zero
	b.	Second
	c.	First
	d.	None
(ii)		late elimination rate constant (from blood data)
	a.	1.43
	b.	2.005
	c.	0.017
	d.	0.0005
	k =	$-2.303 \times \log (2.3) - \log (11.9) / (100 - 4) = 0.017$
(iii)	If the	volume of distribution of the drug is 20 L, calculate the total clearance 77.1
	b.	12.5
	о. С.	0.34
	d.	107.3
		$CIT = 20 L \times 0.017 = 0.34$
(iv)		late Du∞ (from urine data)
	a.	19
	b.	750
	c.	283
	d.	100
		$Du \infty = sum = 283$
(v)		mine amount of drug remains to be excreted at 4 hours after drug administration
(fro	m urine	
	a.	
	b.	600
	c.	45
	d.	2.1
ENI) OF F	XAM # BEST wishes # DR. ANES THABIT